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a b s t r a c t

Relaxation and diffusion data are often analyzed using a Laplace inversion algorithm that incorporates
regularization. Regularization is used because Laplace inversion with finite and noisy data is an ill-con-
ditioned problem for which many solutions exist for a given data set. This paper reports a different
approach. Instead of finding a ‘‘best” solution by some ad hoc criterion, we developed an efficient Monte
Carlo algorithm that generates thousands of probable solutions from which the statistical properties of
the solution can be analyzed. We find that although all of the individual solutions are spiky, the mean
solution spectrum is smooth and similar to the regularized solution. From the Monte Carlo solutions
we obtain probability distributions for quantities derived from the spectrum, such as porosity and bound
fluid. This ability to characterize the uncertainty of such quantities is novel.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In the study of heterogeneous materials, both natural sub-
stances and manmade products, NMR spin relaxation spectra and
diffusion constants are often used as a finger-print of the molecular
species, structure and dynamics. For example, water and crude oils
present in oil reservoirs can be distinguished by diffusion and
relaxation experiments [1]. Typically, spin relaxation and diffusion
are manifested as decaying signals. Data analysis often involves La-
place inversion to obtain a spectrum (or distribution) of relaxation
times or diffusion constants. Such an inversion is ill-conditioned in
the sense that for a given set of data with finite noise, many solu-
tions will fit the data within the statistics of the noise. The well-
established methods, for example Tikhonov regularization [2]
and the maximum entropy method [3,4], find one solution that fits
the data and satisfies some other simultaneous constraint. This
type of approach effectively makes a choice of the class of solution
based on independent criteria. In the case of the regularization
solution, smoother spectra are preferred over more spiky spectra.
Different algorithms essentially use different preferences and thus
result in different ‘‘best” solutions. However, it is difficult to justify
these choices. We will provide some specific examples to illustrate
the multiplicity of the solutions.

NMR signals of T2 decay in porous materials are well modeled
as a sum of decaying exponentials:

mðtÞ ¼
Z 1

0
f ðTÞ expð�t=TÞd logðTÞ; f ðTÞP 0; ð1Þ
ll rights reserved.
where mðtÞ is the signal as a function of time and f ðTÞ is the spec-
trum as a function of relaxation time T. In the following we use
the discrete form of this formula,

m ¼ Gf; f P 0; ð2Þ

with m ¼ fmðtiÞ; i ¼ 1; . . . ;Mg, f ¼ ff ðTjÞ; j ¼ 1; . . . ;Ng, and
G ¼ fGij ¼ expð�ti=TjÞD logðTjÞg.

The principle commonly used in inversion is to use regression
to find a solution f0 that fits the data ‘‘best” by some criteria.
One approach is to find the minimum misfit solution by least-
squares:

f0 ¼ arg min
fP0
km� Gfk2

: ð3Þ

Contrary to popular opinion, the solution to this problem is unique.
Non-uniqueness arises only when the min operator in Eq. 3 is re-
placed by a weaker condition that seeks all solutions satisfying
the noise constraints. The solution to Eq. 3 can be efficiently found
using the non-negative least-squares algorithm [5]. These solutions
tend to have only a small number of non-zero elements [6]. The
positions and amplitudes of these ‘‘spikes” are sensitive to the
noise, creating the undesirable feature that the spectral solution
that is not repeatable over different noise realizations.

The most commonly used approach regularizes the least-
squares equations using

f0 ¼ arg min
fP0
ðkm� Gfk2 þ akfk2Þ; ð4Þ

where a is a scalar regularization parameter chosen to be just large
enough to make the solution stable in the presence of noise. Choos-
ing a ¼ 0 reverts to Eq. 3, while choosing a too large over-smoothes
the solution, making the misfit unacceptably large with respect to
the noise.
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Examples are given in Fig. 1 to illustrate the behavior of these
two approaches using a simulated spin echo decay. The spec-
trum and its associated simulated noisy data are shown in
Fig. 1a. A least-squares T2 spectrum resulting from these data
is shown as the spiky black curve in Fig. 1b, and the correspond-
ing regularized spectrum is overlain as the smooth black curve.
New data were generated from the same spectrum but with a
new noise realization generated with the same statistics; the
least-squares and regularized spectra for these data are overlain
as gray curves on this plot. A comparison of the least-squares
solutions shows that both have three peaks whose amplitudes
and positions vary with noise realization. The corresponding reg-
ularized spectra are less sensitive to noise realization. The
smoothing due to regularization produces two peaks (one is an
inflection), while the least-squares solutions have three peaks.
The true spectrum is overlain as a dashed curve for comparison.
It compares well in this case with the regularized solutions.
However, in cases where the true spectrum is spiky, the least-
squares solutions compares more favorably than the smoother
regularized solutions.

A shortcoming of both least-squares and regularization ap-
proaches that is held in common with all ‘‘best fit” solution ap-
proaches is that they provide no indication of the uncertainty in
the resulting T2 spectrum, i.e., they ignore the range of other spec-
tral solutions that are also compatible with the measurements. The
large range of such solutions is clearly indicated by the diversity of
compatible spectra shown in Fig. 1b.

In this paper we use the Monte Carlo method to probabilisti-
cally sample the range of solutions that are consistent with the
data. We then examine the statistical properties of these spectral
solutions. After demonstrating that the T2 spectral sampling prob-
lem is one of sampling from a truncated-multinormal distribution,
where the truncation results from the non-negativity constraint,
we show that the nature of the uncertainty distribution precludes
the use of efficient truncated normal samplers already in the liter-
ature. The details of these truncated-multinormal samplers are dis-
cussed in Appendix A. We then present a new sampling algorithm
that allows rapid sampling of T2 spectral solutions. We use this
algorithm to compute the uncertainty distribution of the inverted
spectrum, and to compute the uncertainty distributions of other
quantities derived from the spectrum. Previous work on computing
the uncertainty of the T2 spectrum [6] only provides estimates of
the maximum and minimum values of quantities derived from
the spectrum.
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Fig. 1. Panel a shows the T2 spectrum used to synthesize the T2 echo data in the inset. The
echos are sampled at an echo spacing of 0.0002 s starting at 0.0002 s. The noise standard
evaluated by the maximum likelihood method (results scaled to 10% to fit on plot) with t
shown in Panel a, and the gray dots are solutions for the same data but with a diffe
comparison.
2. Theory

The inverse problem of determining f from a noisy measure-
ment of m is one of finding the values of f for which the residuals
� ¼ m� Gf are compatible with the measurement noise, i.e., the
covariance of � should be consistent with the measured noise
covariance. It is important to emphasize that many solutions exist
which satisfy this criterion.

The noise in T2 signals is often of the simple form of an uncor-
related normal distribution [6]. Thus the probability density func-
tion (pdf) of f, pðfÞ, can be expressed succinctly as a truncated-
multinormal distribution,

pðfÞ / exp �1
2
ðm� GfÞTK�1ðm� GfÞ

� �
; f P 0; ð5Þ

where K is a diagonal matrix containing the noise variance versus
time. Truncation here refers to the f P 0 condition. Since the noise
variance is often well approximated as constant in time for a single
measurement, in the following we simplify Eq. 5 with the approxi-
mation K ¼ r2I, where r2 is the measured noise variance and I is
the identity matrix.

In the parlance of Bayesian inference, Eq. 5 is called the likeli-
hood function. It gives the probability of the measurement, m,
conditioned on a given model, f. This is usually written as pðmjfÞ.
In Bayesian inference one would sample from the posterior,
pðfjmÞ, which is related to pðmjfÞ through Bayes’ rule: pðfjmÞ /
pðmjfÞpðfÞ, where pðfÞ is the prior. Here we choose the prior to
be constant, meaning that any value of f is as good as any other va-
lue in the absence of any data. If we had chosen the prior to be
multinormal with a mean of zero and a diagonal covariance of
r2=a, then the maximum value of the posterior would be that gi-
ven by Eq. 4. This points out the commonality between the Bayes-
ian approaches and the regularization approaches. We emphasize
however that the goal of Bayesian methods is to quantify uncer-
tainty while that of regularization methods is to find a single
solution. An excellent tutorial on Bayesian methods is given in [7].

Since m, G and r are inputs to the inversion problem, Eq. 5 pro-
vides a complete description of the uncertainty in f and is thus the
solution to the inverse problem. It allows the relative probabilities
of any values of f to be computed and compared in describing the
solution. If f were expressed in only two dimensions, a plot of these
probabilities would provide a convenient display of the solution
uncertainty. However, with a typical dimension of f being on the
order of 100, other methods are needed to compute and describe
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100 T2 spectral values are logarithmically spaced between 0.001 and 10 s. The 8192
deviation is 0.025 of the maximum echo value. Panel b compares the spiky spectrum
he smooth regularized T2 spectral solution. The black dots are solutions for the data
rent noise realization. The original T2 spectrum is overlain as a dashed curve for
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Fig. 2. Sampler TN3 was applied to the T2 echo data shown in Fig. 1a, generating
10,000 samples. This is a plot of correlation between samples for spectral dimension
61 (T ¼ 0:266 s), the dimension of maximum correlation.
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the uncertainty. In the Monte Carlo method, random samples are
drawn from the distribution. From these samples, statistics such
as mean and variance are readily computed. This is the approach
followed here.

The simplest method for finding random samples drawn from
Eq. 5 is to use standard methods to first draw a large number of
samples from the multinormal distribution (without the non-neg-
ativity constraint) [8], and then accept only samples which satisfy
f P 0. However, this method is astronomically inefficient for the T2

spectral inversion problem since the fraction of multinormal sam-
ples that satisfy f P 0 is miniscule for typical dimensions of f (e.g.,
100).

There are two Monte Carlo samplers in the literature for effi-
ciently solving the more general problem of sampling from a
truncated multinormal distribution in high dimensions [9,10].
These two methods (TN1 and TN2) are Gibbs samplers [11],
i.e., they sample an N-dimensional pdf as a sequence of one-
dimensional sampling problems. This approach is particularly
effective for a truncated-multinormal distribution because effi-
cient algorithms are available for each one-dimensional sam-
pling problem. Unfortunately, both methods perform poorly
with the pdfs found in T2 inversion. This issue is discussed in
Appendix A.
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Fig. 3. Panels a–d present four of the 10,000 random samples from sampler TN3 for
the T2 echo data shown in Fig.1a. The spiky nature of these samples is characteristic
of all of the samples.
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Fig. 4. The mean T2 spectrum computed from 10,000 samples (using TN3) for the
data in Fig. 1 is displayed as a solid black curve. The one-standard deviation region
about the mean in indicated in gray. For comparison, the original T2 spectrum is
overlain as a dashed curve. The dotted curve shows the mean spectrum for data
containing only noise (no signal) with the same noise statistics as the other curves.
3. Enhanced Gibbs sampler

In this section we overcome the limitations of the two Gibbs
samplers mentioned above by making a modest extension of the
Gibbs sampling approach. As discussed in more detail in Appen-
dix A, TN1 is limited because it is unable to traverse in big steps
along the major axes of the covariance ellipsoid, and TN2 is lim-
ited by the non-negativity constraint which causes it to become
‘‘stuck in the corner.” We found that by generalizing the tradi-
tional Gibbs sampling approach to sequentially sample in two
spectral dimensions at a time instead of just one, the resulting
sampler overcomes all the limitations of TN1 and TN2. We have
found it most effective to sample adjacent spectral dimensions,
i.e., we first sample values ðf1; f2Þ, then ðf3; f4Þ, and continue until
the full spectrum has been sampled. Slice sampling is used for
each of the two-dimensional sampling problems. An overview
of two-dimensional slice sampling is presented in Appendix B
along with suggestions for efficient implementation. Only one
iteration of this Gibbs sampler is used for each sample update
because we found that using more did not improve the solution.
We call this algorithm TN3.

Algorithm TN3 was run on the T2 data shown in Fig. 1. The run
time to generate 10,000 samples on a 3.2 GHz Linux desktop ma-
chine was about 4 s. The speedup in TN3 over samplers TN1 and
TN2 was examined by comparing the number of samples needed
before statistical independence is reached (small sample correla-
tion). A plot of sample correlation versus sample lag for spectral
dimension 61, shown in Fig. 2, shows that the TN3 samples are
only weakly correlated after about ten samples, whereas correla-
tion plots for TN1 and TN2 for the same data (shown in Fig. A.3
in Appendix A) indicate substantial correlation remaining after
thousands of samples. This demonstrates a speedup of a least three
orders of magnitude.

Each of the 10,000 samples is a possible solution of the inverse
problem, and the set of all samples represents the range of possible
solutions. Four of these solutions are plotted in Fig. 3a–d. The spiky
nature of these solutions is readily apparent. It is clear from the
diversity of these solutions that interpretation algorithms that rely
on well-determined positions and amplitudes of spectral peaks are
unreliable unless they impose additional constraints on the solu-
tion such as smoothness.
One way to examine the diversity in these spectral solutions is
by plotting the mean and standard deviation of each spectral value.
These are plotted for the 10,000 samples in Fig. 4. The original
spectrum is plotted for comparison as a dashed curve. The mean
solution has two peaks, as does the original spectrum, but the peak
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Fig. 5. Histogram of total porosity, q, computed from 10,000 samples (using TN3)
for the data in Fig. 1. The mean and standard deviation for the histogram are
indicated by the solid gray bars. The mean and standard deviation for the bias-
corrected results are indicated by dashed bars. The true result for our synthetic
model is overlain as a black dot.
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positions are shifted upward from those of the original spectrum.
Furthermore, the width of the second peak is substantially nar-
rower than that in the original spectrum. However, the standard
deviation is broad enough to encompass the original spectrum,
while becoming very narrow outside the support of the original
spectrum. This indicates that the original spectrum lies within
our uncertainty-quantified solution to the inverse problem. It is
important to understand that although the mean spectrum is a
solution, it must not be taken as the solution.

A feature of the uncertainty-quantified solution is the increas-
ingly upward bias in spectral values with decreasing T2. This is a
characteristic of the inverse problem, and is not an artifact of the
TN3 sampler. It is produced by two factors. First, Eq. 1 indicates
that only data with small t are used to determine f ðTÞ for small val-
ues of T. Having fewer data constraints at small T results in greater
uncertainty. Second, the non-negativity constraint forces this
uncertainty to be expressed as positive spectral values. In the limit,
for values of T much smaller than the smallest t sample in the data,
the spectral value is allowed to be any positive number. The dotted
curve at the base of Fig. 4 highlights this bias by showing the mean
spectrum corresponding to only the noise component of the spec-
trum (no signal), clearly showing the increasing bias at small val-
ues of T. This bias has long been recognized in the NMR
community, where the smallest T2 in the spectrum is typically ta-
ken to be several times larger than the smallest time present in the
data. The best means for addressing this bias is to replace the con-
stant prior in our formulation with one which pulls under-con-
strained spectral values toward zero. The standard regularization
method uses this approach by using a zero-mean normal prior.
We have chosen here not to use such a prior in order to demon-
strate the full nature of the solution uncertainty.

Another feature of the solutions that is not indicated in Fig. 4 is
the correlation relationships between spectral positions. This fea-
ture is difficult to capture in a static plot. An animated display over
the 10,000 samples illustrates this correlation as adjacent spectral
values bounce up and down in value. The presence of strong corre-
lation is well known. For example, since the integral of the spec-
trum equals the data value at t ¼ 0, if one spectral value
increases, others must decrease in order to retain a constant inte-
gral value. One way to visualize the spectral uncertainty in way
that includes these contributions is to plot the uncertainty of a
functional of the spectrum, such as its total integral value. This is
done in the next section.

4. Application to functionals of T2 spectra

Using Monte Carlo sampling, we quantify the uncertainty in the
T2 spectral inverse problem in terms of a multiplicity of spectral
solutions. However, uncertainty becomes most useful when it
can be adequately summarized in terms of a few statistics. The plot
of mean and standard deviation in Fig. 4 is one way to visualize the
uncertainty in the entire spectrum, but more representative
descriptions which also capture covariance are hampered by the
large dimension of the spectral domain.

One way around this dimensionality problem is to use a func-
tional to map each spectrum into a single number whose uncer-
tainty can then be visualized as a histogram. Example functionals
are total porosity and fractional porosity. Here we demonstrate
this approach by estimating the uncertainty in some functionals
of the T2 spectrum using algorithm TN3.

The total porosity, q, is obtained as the integral over the T2

spectrum. Computing this for each of the Monte Carlo samples
for the data in Fig. 1a, the uncertainty in q is displayed as a histo-
gram in Fig. 5, yielding the estimate q � 0:1055 � 0:000996. Esti-
mates from the regularized T2 spectra in Fig. 1 are 0.1017 and
0.1008, and from the least-squares spectra are 0.1025 and
0.1011. Since this is a synthetic example, we can compute the true
value: q ¼ 0:100. Our estimate of q is positively biased, being more
than six standard deviations too high.

As discussed in the previous section, this bias is due to the po-
sitive spectral bias for small values of T. The magnitude of this bias,
found by computing spectral samples for data containing only the
noise used in creating the synthetic data (as was done for the dot-
ted curve in Fig. 4) and then computing total porosity, was found to
be 0:00557 � 0:000799. Subtracting this from the biased estimate
yields the reasonable value q � 0:0999 � 0:0013. Since the true
noise versus time is unknown, a more practical approach is to esti-
mate it by subtracting the data predicted by the least-squares
spectral estimate from the measured data, i.e., m� GfLS. The total
porosity corrected with this estimate of noise was found to be
0:100168 � 0:00124. This bias-corrected result is plotted as
dashed bars in Fig. 5, where it is compared with the true value
and the uncorrected estimate. The mean of this bias-corrected re-
sult compares well with the true solution. Since the regularized
solutions also provide good estimates, one might question the va-
lue of using our Monte Carlo approach; it lies in also quantifying
the uncertainty of the estimate.

It is well-known that NMR T2 spectra are sensitive to pore sizes
in rocks and other porous media. As a result, T2 spectra have been
used to obtain capillary curves [1]. In particular, it was found that
short T2 corresponds to small pores where water will be held by
capillary force. Only water in larger pores (i.e., large T2) will partic-
ipate in flow. The fraction of water in large pores (unbound fluid) is
important in determining the permeability of a rock from an NMR
measurement. The unbound fluid volume is defined as the inte-
grated volume with T2 larger than Tc:

qU ¼
Z 1

log Tc

f ðTÞd log T; ð6Þ

where Tc ¼ 0:033 s is a typical cutoff value for sandstones [1]. The
histogram of qU is shown in Fig. 6, yielding the estimate
qU � 0:0870� 0:0021. Note that the true value, 0.0859, is comfort-
ably within the standard error. No bias correction was needed be-
cause qU does not depend on the biased portion of the spectrum.
Estimates from the regularized T2 spectra in Fig. 1 are 0.0847 and
0.0834, and from the least-squares spectra are 0.0725 and 0.0688.
Note that both the regularized solutions and the least-squares
solutions underestimate the value by more than one standard
deviation.
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Fig. 6. Histogram of unbound fluid volume, qU , computed from 10,000 samples
(using TN3) for the data in Fig. 1. The mean and standard deviation are drawn
as gray bars, and the true result for our synthetic model is overlain as a black
dot.
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Fig. A.1. An illustration of the differences between Gibbs samplers TN1 and TN2 for
our two-dimensional example problem. The contours, at Mahalanobis distances of
one and two, indicate the covariance structure, and the mean is at ð�2;10Þ. Panel a
shows the first 20 steps of the TN1 sampler starting at the point ð2;6Þ. Note the slow
mixing over the long axis of the pdf. Panel b shows the first 20 steps of the TN2
sampler starting at the point ð2;6Þ, indicating much better mixing.
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5. Conclusions

Although the regularized approach to NMR T2 spectral inver-
sion yields a solution that is stable in the presence of noise, it
fails to capture the considerable uncertainty present in the spec-
tral inversion problem. We demonstrated that the spectral inver-
sion problem can be expressed as a non-negative multinormal
distribution when the Bayesian prior is a constant, and we use
Monte Carlo sampling to characterize this uncertainty. This
description contains no free parameters. Although this distribu-
tion is a special case of a truncated-multinormal distribution
for which samplers exist in the literature, we show that these
one-dimensional Gibbs samplers are ineffective for the T2 spec-
tral inversion problem. We propose a modest extension of these
samplers in which the Gibbs sampling is done in two dimensions
instead of one, and demonstrate that it is an efficient sampler for
the T2 spectral inversion problem.

We used this new sampler to generate 10,000 samples for a syn-
thetic example T2 inversion problem. From these samples we gen-
erated the mean and standard deviation of the spectral solution
and compared this to the original spectrum used to generate the
synthetic data. The original spectrum is shown to lie within the
range of our inversion solution. While it is tempting to take the
mean spectrum as the inversion result for comparison with, for
example, the regularized solution, the inversion result is in fact
represented by the entire ensemble of the solutions obtained by
the Monte Carlo sampler (e.g., 10,000 spectra). The mean spectrum
is just one aspect of the solution. The solution ensemble describes
the broad range of solution possibilities, i.e., the uncertainty of the
solution.

Using our new sampler, we quantify the well-known result that
there is an increasing positive bias in the T2 spectrum with
decreasing T. The source of this bias is the non-negativity con-
straint combined with the diminishing number of data points
which constrain the spectral solution with decreasing T. In one of
our examples we showed that this bias results in the overestima-
tion of total porosity. Although we could have removed this bias
by imposing a prior that smoothed the spectral samples and hence
underrepresented spectral uncertainty, we instead presented a
method for bias-removal that preserves spectral uncertainty while
generating estimates of total porosity that compare well with
those produced by a regularization approach. Then what is the
advantage of our approach over regularization approaches? We
provide the uncertainty of our estimate, a desirable feature of
any experimental result.
Appendix A. Review of truncated-multinormal samplers

In this appendix we examine use of existing Monte Carlo sam-
plers for the non-negative normal distribution. Samplers in the lit-
erature solve the more general problem of sampling from a
truncated normal distribution [10] defined by

pðfÞ / exp �1
2
ðf � lÞTR�1ðf � lÞ

� �
; Af 6 b; ðA:1Þ

where l is the mean vector, R�1 is the inverse covariance matrix,
and A and b provide the linear truncation constraints. A is a poten-
tially non-square matrix. In our case, b ¼ 0 and A ¼ �I. The ap-
proaches of [9] and [10] are compared in [10], which refers to the
former approach as TN1 and the latter as TN2. A brief outline of
these two approaches is given below for the special case of a non-
negative normal distribution in order to understand why these ap-
proaches are inefficient for T2 spectral inversion. A third approach
[12], based on perfect sampling [11], is not suited to high-dimen-
sional problems and is thus inappropriate for our application.

Both TN1 and TN2 are Gibbs samplers [11]. A Gibbs sampler
samples an N-dimensional pdf as a sequence of one-dimensional
sampling problems in which the sample for a particular dimension,
say j, is drawn from the conditional pdf pðfjjf�jÞ, where f�j repre-
sents the vector f with the j-th element removed. Each dimension
is sampled, with each new sample replacing its old counterpart in
f. After a pass through all dimensions of f, one sample is of f is gen-
erated, and this serves as the starting point for the next sample.
This approach is particularly effective for a truncated multivariate
normal distribution because each one-dimensional sample is
drawn from a truncated univariate normal distribution for which
efficient samplers are available [9].

In order to understand the difference between TN1 and TN2,
consider a two-dimensional example problem with a high correla-
tion between coordinates x and y. The TN1 sampler samples alter-
nately in the x and y dimensions. The large correlation leads to
slow convergence. This example is shown in Fig. A.1a, where the
first 20 samples steps, starting from the point ð2;6Þ, are indicated
by arrows. The samples remain clustered near the starting point
because each one-dimensional update step has its variance limited
to the narrow conditional variance in the x or y directions. This
leads to a strong correlation between consecutive samples, a prob-
lem that is exacerbated with increasing correlation in R.

The importance of having a sampler that is robust in the pres-
ence of strong correlation is illustrated in Fig. A.2. Here the eigen-
values of R for the example of Fig. 1 are seen to grow by a factor of
106 over just the first 10 eigenvalues. Since these are the lengths of
the principal axes of the covariance ellipsoid, it is clear that the
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uncertainty along most of these axes is effectively infinite, while
the uncertainty along a few of these axes is tiny. This indicates a
high degree of correlation.

TN2 improves on the efficiency of the TN1 sampler by sampling
along the directions of the principle axes of the covariance ellipse
(the eigenvector directions) instead of along the coordinate direc-
tions. This allows large steps to be taken along directions where
the uncertainty is large. Fig. A.1b shows the first 20 samples from
the TN2 sampler for our two-dimensional problem. Note that TN2
has much better mixing than TN1, indicating much faster
convergence.

The degree of mixing is indicated by the correlation between
samples for each dimension. We examine this for the noisy T2 echo
data shown in Fig. 1. Since each dimension has its own correlation
plot, we have chosen to plot the correlation for the dimension of
maximum observed correlation, dimension 61 (T ¼ 0:266 s), which
nearly coincides with the peak of the true T2 spectrum. The corre-
lation plots samples from TN1 and TN2, shown in Fig. A.3, indicate
that both samplers require thousands of samples between each
independent sample. This is a clear illustration of the inefficiency
of these algorithms for T2 spectral inversion.

The reason for this poor convergence can be understood in
terms of the covariance structure in the T2 spectral inversion
problem. This structure is illustrated by two-dimensional condi-
tional covariance plots in Fig. A.4. Starting with f defined by Eq.
3 for the data shown in Fig. 1a, we examined all consecutive pairs
of conditional pdfs and found 86 of the form shown in Fig. A.4a
and 13 of the form shown in Fig. A.4b, with the latter more likely
near the peak of the spectrum. We demonstrated earlier (see
Fig. A.3) that TN2 has much better mixing than TN1 for latter
form of covariance because the sample steps can jump long dis-
tances along the major axes of the covariance ellipse. However,
this strategy fails for the covariance structure in Fig. A.4a. For
example, when the current state is at the origin in Fig. A.4a, it
is clear that no jump will be allowed along the major axis of
the ellipse (along the contour direction) because that direction
is blocked by the non-negativity constraint, and jumps along
the minor axis (perpendicular to the contour direction) will feel
a strong pull toward the origin, perpetuating the problem. Hence
neither TN1 nor TN2 will converge well when both types of
covariance are present.
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Appendix B. The two-dimensional slice sampler

An excellent description of the slice sampler is given in [11]. A
summary of the algorithm is given here. For a pdf given by pðxÞ and
a beginning state x0, a uniform random sample, u, is drawn from
the interval 0 6 u 6 pðx0Þ. Then a uniform random sample of x is
drawn from the domain defined by pðxÞP u. This new state, la-
beled x1, is an estimate of the random sample satisfying pðxÞ. Iter-
ating this procedure leads to an independent sample from pðxÞ.

For the truncated normal distribution we can simplify the slice
sampler algorithm by defining pðx0Þ / e/ðx0Þ with
/ðxÞ ¼ ðx� lÞTHðx� lÞ and H ¼ R�1 ¼ r�2GTG. Then a uniform
sample of u is drawn from the interval 0 < u < 1, and
/ðx1Þ ¼ /ðx0Þ � 2 log u. A uniform sample of x is then drawn from
the domain /ðxÞ 6 /ðx1Þ with x P 0. We use rejection sampling
to obtain a uniform sample from this truncated elliptical domain
using the algorithm presented in Appendix A of [12].

The two-dimensional conditional values of l and H for dimen-
sions i and j, denoted l̂m and Ĥm, are given by

l̂m ¼ lm þ RT
�mðR�mmÞ�1ðf�m � l�mÞ

Ĥm ¼ Hmm:
ðB:1Þ

The symbol m represents the pair of indices i and j. The subscript m
on a vector or matrix indicates the selection of those elements. The
subscript �m on a vector indicates the selection of all elements ex-
cept those of m, and on a matrix it indicates the selection of the col-
umns m minus the rows m. The subscript �mm indicates the
selection of all rows and columns except those of m.

To find an expression for l̂m that avoids computing the inverse
of the poorly conditioned GTG matrix, we use the inverse formula
for a partitioned matrix to get
ðR�mmÞ�1 ¼ H�mm �H�mH�1
mmHT

�m

R�m ¼ �R�mmH�mðHmmÞ�1
;

ðB:2Þ

yielding
l̂m ¼ lm � ðHmmÞ�1HT
�mðx�m � l�mÞ: ðB:3Þ
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